Characterization of CSF hydrodynamics in the presence and absence of tonsillar ectopia by means of computational flow analysis.
نویسندگان
چکیده
BACKGROUND AND PURPOSE Phase-contrast MR imaging (PCMR) has only partially characterized cyclic CSF flow and pressure, which, hypothetically, have a role in the pathogenesis of syrinx and symptoms in the Chiari I malformation. Our goal was to use computational flow analysis (CFA) to better understand CSF hydrodynamics. MATERIALS AND METHODS High-resolution MR images were obtained in a healthy volunteer and a patient with Chiari I malformation. With standard segmentation and discretization techniques, 3D models of the subarachnoid space, cerebellum, and spinal canal were created. CSF flow during systole and diastole were simulated with the boundary element method in the models. CSF velocities and pressures computed in the patient with Chiari I malformation were compared with those in the healthy volunteer. Flow patterns were also compared with PCMR results for validation of the technique. RESULTS The CFA and PCMR results agreed well. Inhomogeneous flow patterns characterized by fluid jets anterior and lateral to the spinal cord were demonstrated in both the Chiari I and volunteer models by CFA. Significant circumferential velocities were evident, suggesting swirling flow in the spinal canal. Higher magnitude jets were found in the patient with Chiari I than in the healthy volunteer. Relatively even pressure gradients were found along the spinal canal in both cases, with a 50% steeper gradient in the patient with Chiari I malformation. CONCLUSIONS Circumferential velocities and pressure gradients in the spinal canal, which may be clinically relevant to Chiari I and other malformations, can be obtained by CFA in patient-specific geometries.
منابع مشابه
2D Computational Fluid Dynamic Modeling of Human Ventricle System Based on Fluid-Solid Interaction and Pulsatile Flow
Many diseases are related to cerebrospinal .uid (CSF) hydrodynamics. Therefore, understanding the hydrodynamics of CSF .ow and intracranial pressure is helpful for obtaining deeper knowledge of pathological processes and providing better treatments. Furthermore, engineering a reliable computational method is promising approach for fabricating in vitro models which is essential for inventing gen...
متن کاملCerebrospinal Pulsation Hydrodynamics in a 2D Simulation of Brain Ventricles
In this article, dynamics of the cerebrospinal fluid (CSF) was studied, using computational fluid dynamics. Using MRI images of two special cases, a 2-dimensional model of the ventricular system was made. CSF velocity and pressure distribution in ventricular system have high importance since the flow pattern of this liquid has an important effect on intracranial pressure, i.e., ICP, which has a...
متن کاملInvestigation of stepped planning hull hydrodynamics using computational fluid dynamics and response surface method
The use of step at the bottom of the hull is one of the effective factors in reducing the resistance and increasing the stability of the Planning hull. The presence of step at the bottom of this type of hulls creates a separation in the flow, which reduces the wet surface on the hull, thus reducing the drag on the body, as well as reducing the dynamic trim. In this study, a design space was cre...
متن کاملCFD Simulation of Dry and Wet Pressure Drops and Flow Pattern in Catalytic Structured Packings
Type of packings and characteristics of their geometry can affect the flow behavior in the reactive distillation columns. KATAPAK SP is one the newest modular catalytic structured packings (MCSP) that has been used in the reactive distillation columns, recently. However, there is not any study on the hydrodynamics of this packing by using computational fluid dynamics. In the present work, a 3D ...
متن کاملNumerical Simulation of Seepage Flow through Dam Foundation Using Smooth Particle Hydrodynamics Method (RESEARCH NOTE)
In this paper, a mesh-free approach called smooth particle hydrodynamics (SPH) is proposed to analyze the seepage problem in porous media. In this method, computational domain is discredited by some nodes, and there is no need for background mesh; therefore, it is a truly meshless method. The method was applied to analyze seepage flow through a concrete dam foundation. Using the SPH method, the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- AJNR. American journal of neuroradiology
دوره 30 5 شماره
صفحات -
تاریخ انتشار 2009